
Math Circles - Elementary Number Theory - Fall 2023

Week 3 (Nov 29)

So far, we’ve talked about addition, subtraction, multiplication, and division modulo n. Today, we’ll
start by talking about exponentiation. We’ll start with an example.

Example. Compute 20, 21, 2
2, 23, 24 modulo 5.

Solution.
20 ≡ 1 mod 5

21 ≡ 2 mod 5

22 ≡ 4 mod 5

23 ≡ 3 mod 5

24 ≡ 1 mod 5

■

Notice that:
21 ≡ 2 · 20 ≡ 2 · 1 mod 5

22 ≡ 2 · 21 ≡ 2 · 2 mod 5

23 ≡ 2 · 22 ≡ 2 · 4 mod 5

24 ≡ 2 · 23 ≡ 2 · 3 mod 5

Using this strategy, we get that
25 ≡ 2 · 24 ≡ 2 · 1 mod 5

But wait... we already computed 2 · 1 mod 5, so we know what this answer is going to be. If we
keep going, the answers will keep cycling through the numbers 1, 2, 4, 3, 1, 2, 4, 3, ...

A natural question to ask is whether this will happen for any choice of base g and any choice of
modulus n. And the answer is... yes! If we’re working modulo n, then the outcome has to be one of
the integers 0, . . . , n− 1. There are only n options, so eventually one of them will have to repeat if
we multiply by g enough times. And when this happens, we’ll end up in a cycle, like we did in the
example.

Let’s try another few examples, and see what happens:

Example. Compute 20, 21, 2
2, 23, 24, 25 modulo 6.

Solution.
20 ≡ 1 mod 6

21 ≡ 2 mod 6

22 ≡ 4 mod 6

23 ≡ 2 mod 6

24 ≡ 4 mod 6

25 ≡ 2 mod 6

■
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Example. Compute 50, 51, 52, 53, 54, 55 modulo 6.

Solution.
50 ≡ 1 mod 6

51 ≡ 5 mod 6

52 ≡ 1 mod 6

53 ≡ 5 mod 6

54 ≡ 1 mod 6

55 ≡ 5 mod 6

■

In all three examples, we ended up in a cycle. But, our cycles looked different. Our first cycle cycled
through all the (non-zero) integers modulo 5. Our second cycle didn’t include 1. And our third
cycle included 1, but didn’t cycle through all the integers modulo 6. Let’s brainstorm some of the
differences, and other thoughts on these cycles.

Let n be our modulus and let g ∈ {0, . . . , n− 1}.

• Picking g = 1 (or g = 0) will be a very boring cycle.

• It is always the case that g0 = 1.

• Since g0 = 1, if we want to cycle through all elements of {1, . . . , n−1}, then we want gn−1 ≡ 1
mod n, but we don’t want gi ≡ 1 mod n for any i ≤ n− 1.

• Since g0 = 1, if it is the case that gi ≡ 1 mod n for some i ≤ n− 1, then it must be the case
that i | n− 1.

Let’s explore a few of these points.

Theorem. (Fermat’s Little Theorem) If p is prime then for any g in {1, . . . , p− 1}, we have that

gp−1 ≡ 1 mod p.

Proof. Let p be prime, and g ∈ {1, . . . , p− 1}. First, write out the multiples of g, modulo p:

g, 2g, 3g, . . . , (g − 1)g

If rg ≡ sg mod p for some r ̸= s, then we would have that

rg ≡ sg mod p.

But since p is prime, we know from last week that g has an inverse, g−1, so multiplying the above
equation by g−1 on both sides, we get that

rgg−1 ≡ sgg−1 mod p

and hence that
r ≡ s mod p.

But we said that r and s were different, so this can’t be true. So, it must be the case that the set
of p− 1 integers

{g, 2g, 3g, . . . , (p− 1)g}

consists of the p− 1 integers
{1, 2, 3, . . . , p− 1},
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in some order. So, if we multiply them all together, we get that

g(2g)(3g) · · · ((p− 1)g) ≡ 1(2)(3) · · · (p− 1) mod p.

Simplifying this, we get that

gp−1(1)(2)(3) · · · (p− 1) ≡ (1)(2)(3) · · · (p− 1) mod p.

We can divide both sides by (1)(2)(3) . . . (p− 1) (since p is prime, this has an inverse modulo p) to
get that

gp−1 ≡ 1 mod p.

■

This theorem can actually be generalized to when p is not prime. Remember Euler’s Totient Func-
tion, Φ(n), from Week 1, which counts the number of integers between 1 and n which are relatively
prime with n? Well, this is the main reason why we talked about it. First, we’ll prove a lemma.1

Lemma. Let 1 ≤ a, b ≤ n− 1 be such that gcd(a, n) = 1 and gcd(b, n) = 1. Let c ≡ ab mod n such
that 1 ≤ c ≤ n− 1. Then gcd(c, n) = 1.

Proof. We know from Week 1 (by prime factorization) that if gcd(a, n) = 1 and if gcd(b, n) = 1 then
gcd(ab, n) = 1. Let d < 1 such that d | n. We need to show that d ∤ c. To do this, notice that since
c ≡ ab mod n, we can write ab = c + kn for some integer k. Since d ∤ ab, we get that d ∤ c + kn.
But d | kn, so it must be the case that d ∤ c. Since this is true for all divisors d of n, it must be the
case that gcd(c, n) = 1. ■

Now, for the actual theorem:

Theorem. (Euler’s Totient Theorem) Let a and n be integers such that gcd(g, n) = 1. Then

gΦ(n) ≡ 1 mod n.

Proof. Let g and n be integers such that gcd(g, n) = 1, and let {a1, a2, . . . , aΦ(n)} be the set of
elements, modulo n, which are relatively prime with n. For the same reasoning as in the proof of
Fermat’s Little Theorem, each of the elements in the set {ga1, ga2, . . . , gaΦ(n)} are different, and by
the lemma above, the set {ga1, ga2, . . . , gaΦ(n)} also consists of all elements, modulo n, which are
relatively prime with n (note that the elements might be listed in a different order). So, similarly
to the proof of Fermat’s Little Theorem, we get that

(ga1)(ga2)(ga3) · · · (gaΦ(n)) ≡ a1(a2)(a3) · · · (aΦ(n)) mod n.

Simplifying this, we get that

gΦ(n)(a1)(a2)(a3) · · · (aΦ(n)) ≡ a1(a2)(a3) · · · (aΦ(n)) mod n.

We can divide both sides by a1(a2)(a3) · · · (aΦ(n)) to get that

gΦ(n) ≡ 1 mod n.

■

1A lemma is a small theorem.
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